
Stanford | Mechanical Engineering
Dr. Adam Leeper

Vector Mechanics Primer

1 Vector Operations With No “Coordinate System”

Euclidean vectors have two properties: magnitude and direction. We will repeat this over and over in this section!

Consider the graphic below left with points Ao, Co, and Q. The distance between Ao and Co is L1 = 3 meters, and the
distance between Co and Q is L2 = 2 meters. The angle θ labeled in the diagram is 120◦.

Calculate the distance between Ao and Co.

Ao

Co

QL1

L2

θ

You may be tempted to start doing trigonometry on this picture. Don’t do it! The purpose of the development on these
pages is to show you how to think in terms of vectors, not trigonometry. It may feel heavy-handed for this simple problem,
but thinking in terms of vectors allow a level of abstraction that can make more complex problems tractable and easier to
transfer to computer code. This is key in many domains such as graphics, aerospace, and robotics.

First we’ll introduce two vectors ~u and ~v to “work with” in this problem, drawn on the figure below left. These vectors form
a “basis” for the 2D plane of the page, meaning any vector in the page can be expressed as a linear combination of ~u and ~v.
The choice of basis vectors is arbitrary and non-unique, but we’ve picked these vectors because they are the easiest quantities
to work with given the information we have.

1. ~u has length 3 (magnitude) and points from Ao to Co (direction).

2. ~v has length 2 (magnitude) and points from Co to Q (direction).

Ao

Co

Q

~u

~v

Ao

Co

Q
Ao~rCo

Co~rQ

Ao~rQ

Our notation for general position vectors indicates where the “tail” is and where the head (arrow) is. For example, the
vector pointing from Ao to Q is Ao~rQ, as shown above right. This notation is “basis independent”, meaning it is abstract
and uncommitted to how it is expressed. It is, however, very specific about what it means geometrically. Later we will see
how a basis-independent vector can be expressed using different combinations of other vectors.

Then we can express the basis-independent position vectors between the points above as follows:
Ao~rCo = 1 ~u
Co~rQ = 1 ~v
Ao~rQ = Ao~rCo + Co~rQ = 1~u + 1~v

Now to answer the actual question: what is the distance from Ao to Q? The distance is the magnitude of Ao~rQ, which we

can find by applying the defintion of vector dot product: ~a ·············~b ,
∣∣~a∣∣∣∣~b∣∣ cos(∠(~a,~b))

Copyright © 2011-2020 by Adam Leeper. 1



∣∣Ao~rQ
∣∣ ∣∣Ao~rQ

∣∣
���

���
���

�: 1

cos(∠(Ao~rQ, Ao~rQ)) = Ao~rQ ············· Ao~rQ Definition∣∣Ao~rQ
∣∣2 = (1~u + 1~v) ············· (1~u + 1~v) Simplify and Substitute

= 1 ∗ 1 (~u ·············~u) + 1 ∗ 1 (~u ·············~v) Distribute and Collect Scalars

+ 1 ∗ 1 (~v ·············~u) + 1 ∗ 1 (~v ·············~v)

= (3 ∗ 3 cos∠(~u,~u)) + (3 ∗ 2 cos∠(~u,~v)) Re-apply Dot Product Definition

+ (2 ∗ 3 cos∠(~v,~u)) + (2 ∗ 2 cos∠(~v,~v))

= 9 cos(0◦) + 6 cos(60◦) Re-apply Dot Product Definition

+ 6 cos(60◦) + 4 cos(0◦)

= 19

So the distance between Ao and Q is
√

(19) ≈ 4.36 meters. If you’ve studied vector geometry using traditional methods
the process above may be somewhat surprising or unsettling.

1. We did not introduce a coordinate system with orthogonal directions, nor did we “resolve components”.

2. Our chosen basis vectors were not orthogonal and not unit length.

3. We simply used the magnitude and direction of the vectors we had and applied definitions until we were done.

2 Vectors with Multiple Bases

Now consider the picture below of a book hovering above the ground. Which is designed to look similar to the one in the
previous section although some dimensions have changed. Relevant measured lengths and angles are shown in the figure.

Ao

Co

Q

1.5

2.0

θ
2.5

1.0

Let’s find:

1. the distance between Ao and Co.
2. the distance between Ao and Q.

The abstract concept is the same as before. We will write basis-independent position vectors (shown below left), choose basis
vectors to work with, and proceed with the math.

Ao

Co

Q
Ao~rCo

Co~rQ

Ao~rQ

Ao

Co

Q

âx

ây

ĉx

ĉy

Copyright © 2011-2020 by Adam Leeper. 2



In the figure above right, we create a rigid vector basis A consisting of mutually orthogonal, unit-length vectors âx, ây, âz.
We create a similar basis C of vectors ĉx, ĉy, ĉz rigidly attached to the book. Basis C is initially aligned with A and then
undergoes a right-handed rotation of angle θ about âz = ĉz (counter-clockwise in this picture).

We can now write the position vectors as:

Ao~rCo = 1.5 âx + 2.5 ây

Co~rQ = 1 ĉx + -2 ĉy

Ao~rQ = Ao~rCo + Co~rQ = 1.5 âx + 2.5 ây + 1 ĉx + -2 ĉy

(1) Now to find the distance between Ao and Co:∣∣Ao~rCo
∣∣2 = Ao~rCo ············· Ao~rCo

= (1.5 âx + 2.5 ây) ············· (1.5 âx + 2.5 ây) Setup

= 1.5∗1.5 ���
��: 1

(âx ············· âx) + 1.5∗2.5 ���
��: 0

(âx ············· ây) Distribute and Collect Scalars

+ 2.5∗1.5 ���
��: 0

(ây ············· âx) + 2.5∗2.5 ���
��: 1

(ây ············· ây)

= 1.52 + 2.52 = 8.5 Re-apply Dot Product Definitions and Simplify∣∣Ao~rCo
∣∣ =

√
8.5 ≈ 2.92 meters

In this case the magnitude is the square root of the sum of the squares of the coefficients, which should be familiar from
calculus or physics. Note why it works: it’s only because Ao~rCo is expressed in terms of vectors that are mutually orthogonal
and unit length.

(2) Now to find the distance between Ao and Q:∣∣Ao~rQ
∣∣2 = Ao~rQ ············· Ao~rQ

= (1.5 âx + 2.5 ây + 1 ĉx + -2 ĉy) ············· (1.5 âx + 2.5 ây + 1 ĉx + -2 ĉy)

= 1.5 ∗ 1.5 (âx ············· âx) + 1.5 ∗ 2.5 (âx ············· ây) + 1.5 ∗ 1 (âx ············· ĉx) + 1.5 ∗ -2 (âx ············· ĉy)

+ 2.5 ∗ 1.5 (ây ············· âx) + 2.5 ∗ 2.5 (ây ············· ây) + 2.5 ∗ 1 (ây ············· ĉx) + 2.5 ∗ -2 (ây ············· ĉy)

+ 1 ∗ 1.5 (ĉx ············· âx) + 1 ∗ 2.5 (ĉx ············· ây) + 1 ∗ 1 (ĉx ············· ĉx) + 1 ∗ -2 (ĉx ············· ĉy)

+ -2 ∗ 1.5 (ĉy ············· âx) + -2 ∗ 2.5 (ĉy ············· ây) + -2 ∗ 1 (ĉy ············· ĉx) + -2 ∗ -2 (ĉy ············· ĉy)

Here we are blocked since we don’t know the dot products between basis vectors of A and C . But we do know all the basis
vectors are unit length, so the only remaining term in the dot product is cosine of the angle between those vectors, which we
find from the figure. It is convenient to arrange all the possible combinations in a table:

CRA âx ây âz

ĉx cos(30◦) cos(90◦ − 30◦) cos(90◦)

ĉy cos(90◦ + 30◦) cos(30◦) cos(90◦)

ĉz cos(90◦) cos(90◦) cos(0◦)

=

CRA âx ây âz

ĉx 0.86603 0.5 0

ĉy −0.5 0.86603 0

ĉz 0 0 1

Some things to notice about the table above:

• This is often called a rotation table because it relates two bases rotated with respect to one another. The symbol CRA

is usually just read left-to-right using the names of the bases, e.g. “C-R-A”.
• Each entry is the dot product between the corresponding row and column labels. For example, âx ············· ĉy = − 0.5.
• These entries are sometimes called direction cosines since they are the cosine of the angle between unit-length vectors.
• To form a unit vector from a linear combination of the unit vectors in the other basis, look at the corresponding row

or column. For example, ây = 0.5 ĉx + 0.866 ĉy + 0 ĉz.

Copyright © 2011-2020 by Adam Leeper. 3



Armed with this information, we can now finish the previous calculation:∣∣Ao~rQ
∣∣2 = 1.5 ∗ 1.5 (1) + 1.5 ∗ 2.5 (0) + 1.5 ∗ 1 (0.866) + 1.5 ∗ -2 (-0.5)

+ 2.5 ∗ 1.5 (0) + 2.5 ∗ 2.5 (1) + 2.5 ∗ 1 (0.5) + 2.5 ∗ -2 (0.866)

+ 1 ∗ 1.5 (0.866) + 1 ∗ 2.5 (0.5) + 1 ∗ 1 (1) + 1 ∗ -2 (0)

+ -2 ∗ 1.5 (-0.5) + -2 ∗ 2.5 (0.866) + -2 ∗ 1 (0) + -2 ∗ -2 (1)

= 12.938∣∣Ao~rQ
∣∣ =

√
12.94 ≈ 3.60 meters

What would it take to apply our familiar “square root of sum of squares” formula to find distance? We’d need Ao~rQ to be
expressed in terms of only basis A or C , but not both. How do we do this?

Recall the table above allows us to express a unit vector from one basis in terms of the other basis. Hence, we can simply
substitute and combine terms:

Ao~rQ = 1.5 âx + 2.5 ây + 1 ĉx + -2 ĉy

= 1.5 âx + 2.5 ây + 1 (0.866 âx + 0.5 ây + 0 âz) + -2 (-0.5 âx + 0.866 ây + 0 âz)

= 3.37 âx + 1.27 ây∣∣Ao~rQ
∣∣ =

√
(3.37 2 + 1.27 2) ≈ 3.60 meters, which matches the previous result.

There are a variety of reasons one might pick a particular basis to work in, but the vector Ao~rQ has the same magnitude
and same direction whether it is expressed in terms of basis A, basis C , or some combination of the two. When we change
how a vector is expressed using a rotation table it’s best to use the words “re-express” or perhaps “change basis”. We avoid
saying that the vector was “rotated” (or “converted”, or “transformed”). because it’s still the same vector!

3 Toward Rotation and Transformation Matrices

In the previous section we used a relatively verbose notation free of matrices or linear algebra, mostly to prove a point. In
practice it is convenient to use matrices, but we have to be careful. Consider the following statement, which might happen
if you naively type the given position vectors into a computer program:

Ao~rQ = Ao~rCo + Co~rQ ?
=

 1.5
2.5
0

 +

 1
-2
0

 (wrong)
=

 2.5
0.5
0

 (wrong)
= 2.5 âx + 0.5 ây

The problem is that matrices are meaningless collections of numbers. Matrices are convenient and powerful tools of modern
computing, but you have to carry enough meaning and context in your notation that you can identify mistakes. For example,
a subscript can denote that a matrix represents a linear combination of specific basis vectors:

Ao~rQ (ok)
=

 1.5
2.5
0


âxyz

+

 1
-2
0


ĉxyz

Can’t simplify further!

In the previous section we were able to arrive at a single-basis expression by substituting ĉx, ĉy, ĉz with linear combinations
of âx, ây, âz using the values in the table CRA.

Linear algebra is excellent for expressing linear combinations! Multiplying a 3x3 matrix with a 3x1 matrix gives a 3x1 matrix
that is a linear combination of the columns of the 3x3 matrix. By treating the rotation table as a matrix then it’s straight
forward to re-express a vector by matrix multiplication. Let’s not forget what’s happening here – the columns of the rotation
matrix must represent the same basis vectors as those in column matrix we wish to re-express, otherwise the meaning of the
arithmetic has changed.

To take Co~rQ which was given in basis C and re-express it in A, we need a matrix whose columns represent basis C . This
is ARC, which is the transpose of the table we wrote before – it contains the same information but the rows and columns
(including the unit vector labels) are swapped. Then we can do the following, which is exactly equivalent to the substituation
we did before:

Copyright © 2011-2020 by Adam Leeper. 4



Ao~rQ (ok)
=

 1.5
2.5
0


âxyz

+

 0.866 −0.5 0
0.5 0.866 0
0 0 1

  1
-2
0


ĉxyz

=

 1.5
2.5
0


âxyz

+

 1.866
-1.23

0


âxyz

=

 3.366
1.27

0


âxyz

= 3.366 âx + 1.27 ây

3.1 Coordinate Frames and “Transforming” Vectors

In many fields (e.g. graphics, robotics) a “rigid frame” or “coordinate frame” is the combination of a vector basis and a
special point called the “origin” of the coordinate frame. In this example, “coordinate frame C” (often abbreviated “frame
C”) could have Co as its origin and ĉx, ĉy, ĉz as its basis vectors.

By convention, vectors in these fields nearly always implicitly couple the “tail” of the vector and the basis used to express
the vector. For example, by convention Co~rQ will always be expressed in terms of C and might be called “the position of Q
in (or relative to) frame C”. The notation in code specifies only the coordinate frame since the tail point is implied: c p q.
Similarly, Ao~rQ will always be expressed in A, will be called “the position of Q in frame A”, and might be notated in code
as a p q.

It should be obvious by now, but Ao~rQ and Co~rQ are different vectors (different mangitude and direction)! To calculate
Ao~rQ, which by convention must be expressed in A, you take Co~rQ and re-express it in A, and then add Ao~rCo as we did
above.

a p q = a p c + a R c ∗ c p q;

This process of re-expressing a vector and then adding an offset is often called “transforming” it from one frame to another.
It’s misleading terminology – it would be better to call it “getting a point’s position relative to a different coordinate frame
origin and expressed in that basis” but admittedly that is a mouthful.

Notice that transforming c p q to frame A uses two pieces of information: Ao~rCo expressed in A (a p c) and ARC (a R c).
These two items are generally packed together into a transformation object ATC (read “A-T-C”) denoted as a T c in code,
and used in code as:

a p q = a T c ∗ c p q;

This information is sometimes packed into a 4x4 transformation matrix so that the mathematical expression above is simply
matrix multiplication. However, in programming there are many ways to create an object that carries the semantics of a
transformation matrix without actually being a matrix, so I think it’s better to continue with the abstraction and avoid
getting stuck on any specific representation.

The code notation above is insufficient for vectors with tails not originating at the coordinate frame origin. For example,
if Co~rQ is re-expressed in A using a rotation matrix (as we did above), what should we call it? It’s still the position of Q
measured from Co, but it’s measured in basis A. So it’s misleading to say “the position of Q in frame A” (because it’s not a
vector from Ao to Q) and misleading to say “the position of Q in frame C” (because it’s not expressed in basis C ). In this
case the notation must explicitly state how the vector is expressed in addition to what it represents physically:

a vec c q =
[
Co~rQ

]
âxyz

3.2 On Language

When referring to the rotation matrix ARC in spoken English, people tend to use the semantics of input / output because of
how matrix arithmetic works. For example, you might hear someone call ARC the “rotation matrix from C to A” or in code
call it a from c because of how it’s used to take a vector expressed in C and express it in A. A similar thing happens with
transformation matrices, where ATC might be described as “the transformation from C to A”.

But the symbol name is usually just read left-to-right using the letters (“A-R-C” or “A-T-C”). This mismatch between
reading the symbol name and the right-to-left matrix operator description is completely an artifact of matrix operations.
Just to prove the point: I could write a C++ function that takes ARC and a vector in terms of âx, ây, âz and returns the
same vector expressed in ĉx, ĉy, ĉz – suddenly it’s “the rotation matrix from A to C” simply because my function isn’t tied
to linear algebra and matrix multiplication semantics!

So, my recommendation is to avoid the long-form description for matrices! Just read the symbol name left-to-right, know
how it’s used, and move on.

Copyright © 2011-2020 by Adam Leeper. 5


