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Chapter 1

Vectors

1.1 Distribution

Distribution is a useful method for calculating dot products and cross products. Calculating a dot product or cross product
by distribution consists of three steps:

1. Distribute terms: Note the order of terms must be preserved.

2. Combine scalars: Scalar multiplication with vectors is associative.

3. Use definitions: Use the definition of dot product and cross product as necessary.

Example:

Calculate the following dot and cross products. Assume n̂x, n̂y, n̂z form a right-handed, orthonormal basis.

5 n̂x ············· (2 n̂x + 3 n̂y) = 5 n̂x ············· 2 n̂x + 5 n̂x ············· 3 n̂y

= 10 (n̂x ············· n̂x) + 15 (n̂x ············· n̂y)
= 10 (1) + 15 (0)
= 10

5 n̂x × (2 n̂x + 3 n̂y) = 5 n̂x × 2 n̂x + 5 n̂x × 3 n̂y

= 10 (n̂x × n̂x) + 15 (n̂x × n̂y)

= 10 (~0) + 15 (n̂z)
= 15 n̂z

Distribute terms, preserve order.
Combine scalars.
Use definition of dot product.

Distribute terms, preserve order.
Collect scalars.
Use definition of cross product.

Example:

Consider arbitrary vectors ~u, ~v, and ~w (arbitrary means they are not necessarily unit-length or orthogonal to each other).
Show that (4 ~u − 7 ~w) ············· 3 ~u× 2 ~v simplifies to (42 ~w ············· (~v×~u)).

Solution:

In more complex problems like this, the steps outlined above may be used multiple times or in a different order.

(4 ~u− 7 ~w) ············· 3 ~u× 2 ~v
= (4 ~u − 7 ~w) ············· (3 ~u× 2 ~v) Cross product must occur before dot product.
= (4 ~u − 7 ~w) ············· (6 ~u×~v) Collect scalars in cross product.
= 4 ~u ············· (6 ~u×~v) − 7 ~w ············· (6 ~u×~v) Can’t simplify ~u×~v, so treat as a single vector quantity and distribute.
= 24 ~u ············· (~u×~v) − 42 ~w ············· (~u×~v) Collect scalars in dot products.
= 24 (0) − 42 ~w ············· (~u×~v) ~u×~v is perpendicular to both ~u and ~v, so ~u ············· (~u×~v) = 0.
= − 42 ~w ············· (~u×~v) Reverse cross product since (~u×~v) = − (~v×~u).
= 42 ~w ············· (~v×~u) Cannot simplify these arbitrary vectors any further.

1.1.1 Organizing Your Work

When distributing a dot or cross product for two vectors with many terms it is easy to omit or mix-up terms. These errors
can be avoided by carefully organizing your work (as described below) so that errors stand out visually.

Consider the vectors ~a and ~b. To calculate ~a ············· ~b or ~a × ~b, organize the distribution as follows (see the examples below):
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1. Distribute the first term of vector ~a to each of the terms of vector ~b, preserving the ordering.

2. Go to the next line.

3. Distribute the next term of vector ~a to each of the terms of vector ~b, preserving the ordering.

4. Repeat step 2 and 3 for each of the terms in vector ~a.

This will naturally organize the expanded terms into a shape where the number of rows is equal to the number of terms in
vector ~a and a number of columns is equal to the number of terms in vector ~b. This layout makes it easy to visually inspect
the rows and columns of the result for any mistakes.1

Example:

Consider the force ~F = F1 n̂x + F2 n̂y and the velocity of the point where ~F is applied, ~v = ẋ n̂x + r θ̇ b̂x + ż n̂z.

Calculate the power of the force, defined as P , ~F ·············~v . Assume n̂x, n̂y, n̂z and b̂x, b̂y, b̂z are each right-handed, orthonormal

bases, however the relationship between n̂xyz and b̂xyz is not specified.

Solution:

P , ~F ·············~v = (F1 n̂x + F2 n̂y) ············· (ẋ n̂x + r θ̇ b̂x + ż n̂z) Setup

= F1 n̂x ············· ẋ n̂x + F1 n̂x ············· r θ̇ b̂x + F1 n̂x ············· ż n̂z Distribute first term across second grouping.

+ F2 n̂y ············· ẋ n̂x + F2 n̂y ············· r θ̇ b̂x + F2 n̂y ············· ż n̂z Distribute second term across second grouping.

Notice the distinct pattern. First, we can check that the dimensions of the result (2 rows by 3 columns) match the number

of terms in the vectors ~F and ~v . Next, we see the terms in the first vector (~F) are written in order down each of the
columns, and come first in each of the dot products. The terms in the second vector (~v ) are written in order across each
of the rows, and come second in each of the dot products. By writing the expanded result in this shape it is easy to
check that no terms were omitted, that the ordering was preserved everywhere, and that no copying errors were made (e.g.

accidentally writing n̂x where there should be b̂x).

= F1 ẋ (n̂x ············· n̂x) + F1 r θ̇ (n̂x ············· b̂x) + F1 ż (n̂x ············· n̂z) Collect Scalars

+ F2 ẋ (n̂y ············· n̂x) + F2 r θ̇ (n̂y ············· b̂x) + F2 ż (n̂y ············· n̂z)

= F1 ẋ (1) + F1 r θ̇ (n̂x ············· b̂x) + F1 ż (0) Apply Definitions

+ F2 ẋ (0) + F2 r θ̇ (n̂y ············· b̂x) + F2 ż (0)

= F1 ẋ + F1 r θ̇ (n̂x ············· b̂x) + F2 r θ̇ (n̂y ············· b̂x) Simplify

In a problem with a picture (or if a rotation table were given) the relationship between n̂x, n̂y, n̂z and b̂x, b̂y, b̂z could

be deduced, and hence the dot products n̂x ············· b̂x and n̂y ············· b̂x could be found. However, without further information in this
example we cannot simplify this result any further.

1.2 Shortcuts for Calculating Certain Dot Products and Cross Products

In introductory physics or math classes it is common to only use a single
right-handed, orthonormal vector basis, such as î, ĵ, k̂ or n̂x, n̂y, n̂z. When
calculating the dot product or cross product of two vectors both expressed
in terms of the same right-handed, orthonormal basis it becomes possible
to use some convenient shortcuts for calculation. While these methods are
useful, it must be stressed that they are special-case formulas and not
definitions.

i

j

k

nx

ny

nz

1.2.1 Calculating Dot Product in a Single Orthonormal Basis

The familiar result that dot product is calculated as the sum of products of components is a special case. To see how this
arises, consider the right-handed, orthonormal basis n̂x, n̂y, n̂z and the dot product ~u ············· ~w, with ~u = a1 n̂x + a2 n̂y + a3 n̂z

and ~w = b1 n̂x + b2 n̂y + b3 n̂z .

1Those familiar with matrix algebra will recognize this looks similar to an outer-product, if the terms of ~a and ~b were organized into column-
matrix form.
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Then we have:

~u ············· ~w = (a1 n̂x + a2 n̂y + a3 n̂z) ············· (b1 n̂x + b2 n̂y + b3 n̂z) Setup

= a1 b1 (n̂x ············· n̂x) + a1 b2 (n̂x ············· n̂y) + a1 b3 (n̂x ············· n̂z) Distribute and Collect Scalars

+ a2 b1 (n̂y ············· n̂x) + a2 b2 (n̂y ············· n̂y) + a2 b3 (n̂y ············· n̂z)

+ a3 b1 (n̂z ············· n̂x) + a3 b2 (n̂z ············· n̂y) + a3 b3 (n̂z ············· n̂z)

= a1 b1 (1) + a1 b2 (0) + a1 b3 (0) Apply Definitions

+ a2 b1 (0) + a2 b2 (1) + a2 b3 (0)

+ a3 b1 (0) + a3 b2 (0) + a3 b3 (1)

= a1 b1 + a2 b2 + a3 b3 Simplify

We can see that in the special case where two vectors are expressed in the same right-handed, orthonormal basis, then the
dot product may be calculated as the sum of the products of the components:

(a1 n̂x + a2 n̂y + a3 n̂z) ············· (b1 n̂x + b2 n̂y + b3 n̂z)
(special)

= a1 b1 + a2 b2 + a3 b3 (1.1)

Example:

The velocity of a particle is ~v = vx b̂x + vy b̂y + 0 b̂z, where b̂x, b̂y, b̂z form a right-handed,
orthonormal basis. Calculate the particle’s kinetic energy, defined asK, 1

2
m~v ·············~v . bx

by

bz

Solution:

Since the vector~v is expressed in terms of a single right-handed, orthornormal basis, equation 1.1 applies.

K , 1
2
m~v ·············~v = 1

2
m (vx b̂x + vy b̂y + 0 b̂z) ············· (vx b̂x + vy b̂y + 0 b̂z) = 1

2
m (v2

x + v2
y + 0)

Example:

The position vector of a point Q from a point P is ~r = 2 î + 7 ĵ − 3 k̂, where î, ĵ, k̂ form a right-
handed, orthonormal basis. Find the distance, d, between Q and P by calculating

∣∣~r∣∣, the magnitude of
the position vector.

i

j

k
Solution:

Since the vector ~r is expressed in terms of a single right-handed, orthornormal basis, equation 1.1 applies.

d =
∣∣P~rQ∣∣ =

√
P~rQ ············· P~rQ =

√
(2 î + 7 ĵ− 3 k̂) ············· (2 î + 7 ĵ− 3 k̂) =

√
(2)(2) + (7)(7) + (−3)(−3) =

√
62

1.2.2 Calculating Single-Basis Cross Products

Several shortcut methods exist for calculating the cross product of two vectors expressed in the same right-handed, orthonor-
mal basis. To derive these special-case shortcuts, consider the right-handed, orthonormal basis n̂x, n̂y, n̂z and the cross
product ~u× ~w, with ~u = a1 n̂x + a2 n̂y + a3 n̂z and ~w = b1 n̂x + b2 n̂y + b3 n̂z .

Then we have:

~u× ~w = (a1 n̂x + a2 n̂y + a3 n̂z)× (b1 n̂x + b2 n̂y + b3 n̂z) Setup

= a1 b1 (n̂x× n̂x) + a1 b2 (n̂x× n̂y) + a1 b3 (n̂x× n̂z) Distribute and Collect Scalars

+ a2 b1 (n̂y× n̂x) + a2 b2 (n̂y× n̂y) + a2 b3 (n̂y× n̂z)

+ a3 b1 (n̂z× n̂x) + a3 b2 (n̂z× n̂y) + a3 b3 (n̂z× n̂z)

= a1 b1 (~0) + a1 b2 (n̂z) + a1 b3 (− n̂y) Apply Definitions

+ a2 b1 (− n̂z) + a2 b2 (~0) + a2 b3 (n̂x)

+ a3 b1 (n̂y) + a3 b2 (− n̂x) + a3 b3 (~0)

= (a2 b3 − a3 b2) n̂x + (a3 b1 − a1 b3) n̂y + (a1 b2 − a2 b1) n̂z Simplify

Copyright © 2011-2020 by Adam Leeper. 6



We can see that in the special case where two vectors are expressed in the same right-handed, orthonormal basis, then their
cross product may be calculated as:

(a1 n̂x + a2 n̂y + a3 n̂z)×(b1 n̂x + b2 n̂y + b3 n̂z)
(special)

= (a2 b3 − a3 b2) n̂x + (a3 b1 − a1 b3) n̂y + (a1 b2 − a2 b1) n̂z (1.2)

Unlike the special-case dot product formula, the result for cross product is rather complex. Instead of memorizing this result
we prefer to make use of one of the methods that follow.

Cross Product via Matrix Determinant

One method for arriving at the previous result is to arrange the basis vectors and coefficients in a 3x3 matrix and calculate
the matrix determinant. To calculate the product ~u× ~w in the special case where ~u and ~w are expressed in terms of the
same right-handed, orthonormal basis:

1. Write the basis vectors in the first row of the matrix, in some order.

2. Write the coefficients of ~u in the second row, using the same order.

3. Write the coefficients of ~w in the third row, using the same order.

4. Calculate the determinant of the matrix.

~u× ~w (special)
= det(

 n̂x n̂y n̂z

a1 a2 a3

b1 b2 b3

)

Some common methods for computing a 3×3 matrix determinant are (1) expansion by minors, and (2) the diagonal method.
Details for executing these methods can be readily found through an internet search.

1.2.3 Cross Product Memory Devices for Unit Vectors in a Single Basis

Several methods can be used to memorize (or deduce) the cross products between the unit vectors in a single right-handed,
orthonormal basis. These methods all rely on the common idea that the cross product of any two vectors of such a basis will
be parallel to the third vector, subject to a + or - sign (unless crossing one of the basis vectors with itself, in which case
the result is ~0 by definition).

Alphabetical Ordering

Perhaps the simplest method is to simply appeal to the alphabetical ordering of
the unit vectors. Using the the sequence n̂x, n̂y, n̂z as an example, the sign is
positive if the crossed vectors are in alphabetical order (e.g. n̂x× n̂y = n̂z), and
negative otherwise (e.g. n̂y× n̂x = − n̂z). Note that the vector ordering has “wrap-
around”; to help visualize this, it is may be useful to write the first two vectors in
the sequence again at the end of the sequence (e.g. n̂x, n̂y, n̂z, n̂x, n̂y), so that the
two unit vectors in a cross product can always be found as an adjacent pair in the
list (e.g. n̂z× n̂x = n̂y).

For visual learners, the visual representations shown at right may be useful.

Graphical Visualization with Right-Hand Rule

A pictoral method is to draw a right-handed, orthonormal basis and then use the right-hand rule to deduce the cross-products
between pairs of unit vectors. The figure below shows a few example sketches. In the two 3D views, note the coloring of the
tips follows a common graphics convention where red, green, and blue (RGB) correspond to x-y-z (or i-j-k), respectively.

Copyright © 2011-2020 by Adam Leeper. 7



1. Vector Basics - Dot and Cross Product via Distribution

The figure to the right shows unit vectors v̂, ŵ, x̂, ŷ, ẑ.
The angle between adjacent vectors is 30◦.

Given: ~a = 0.5 ŷ + 2 ŵ ~b = 2 v̂ − 1 x̂

(a) Draw vectors ~a and ~b on the figure.

(b) Dot product can be regarded as a “projection” or “measure” of a vector in the direction of a unit vector.
Draw ~a ············· x̂, the projection of ~a on x̂ (the x̂ measure of ~a).

(c) Use the vector dot-product distributive property to calculate ~a ············· x̂.
Result:

~a ············· x̂ = 2.5 ∗ cos(30◦) = 2.17

~a · x̂ = (0.5 ŷ + 2 ŵ) · x̂

= 0.5 ŷ · x̂ + 2 ŵ · x̂ distribute

= 0.5 ∗
∣∣ŷ∣∣∣∣x̂∣∣ cos∠(ŷ, x̂) + 2

∣∣ŵ∣∣∣∣x̂∣∣ cos∠(ŵ, x̂) definition

= 0.5 ∗ (1)(1) cos 30◦ + 2 ∗ (1)(1) cos 30◦ plug in

= 2.5 ∗ cos(30◦) simplify

= 2.17
2.17 is the length of the green line.

(d) Use the vector cross-product distributive property to calculate ~a × ~b.
Result:

~a × ~b = −3.75 ẑ

~a×~b = (0.5 ŷ + 2 ŵ)× (2 v̂ − 1 x̂)

= 1 ŷ × v̂ − 0.5 ŷ × x̂ + 4 ŵ × v̂ − 2 ŵ × x̂ distribute

= 1 (−ẑ) − 0.5 (−ẑ) sin∠(ŷ, x̂) + 4 (−ẑ) sin∠(ŵ, v̂)− 2 (+ẑ) sin∠(ŵ, x̂) definition

= −1 ẑ + 0.5 sin 30◦ ẑ − 4 sin 30◦ ẑ− 2 sin 30◦ ẑ plug in

= −3.75 ẑ (Note the result of a cross product must be a vector.) simplify

Copyright © 2011-2020 by Adam Leeper. 8



2. Vector Basics - Measures of a Vector in Different Vector Bases

(Adapted from problem 2.7.13 of Sheri Sheppard’s textbook.)

The figure at right shows two cables tethered to a support at point O.
The tension in the left cable is T1 = 2 kip, and the tension in the right
cable is T2 = 1 kip (1 kip = 1000 lb-force).

The support is embedded in concrete, which is very strong in compres-
sion but relatively weak in tension. Engineers are concerned that the
support will pull out of the concrete if the force pulling perpendicular
to the concrete surface (along the axis of the support, up-and-right)
exceeds 2500 lb-force.

(a) Determine the resultant force at O due to the cables. Express your answer in terms of x̂ and ŷ components,
and then also in components parallel and perpendicular to the concrete surface. Note: Use the definition of
dot-product.

To aid in bookkeeping and to let us work with a simple expression, we define unit vectors in the direction of
each cable: û in the direction of cable 1, and ŵ in the direction of cable 2. The resultant force due to the
cables is then:

~F
O

= T1û + T2ŵ

This is the simplest possible expression of ~F
O

. It is uncommitted to any particular components or measures.

Horizontal and Vertical components:

To express this vector in horizontal and vertical components, we can dot with x̂ and ŷ to get the measures of
the force in each of those directions. The angles in each dot-product are obtained by inspection of the figure.

~F
O
············· x̂ = (T1û + T2ŵ) ············· x̂ = T1 û ············· x̂ + T2 ŵ ············· x̂ = T1 cos(130◦) + T2 cos(30◦) = −0.420 kip

~F
O
············· ŷ = (T1û + T2ŵ) ············· ŷ = T1 û ············· ŷ + T2 ŵ ············· ŷ = T1 cos(40◦) + T2 cos(60◦) = 2.03 kip

Hence ~F
O

can be written as:
~F
O

= − 0.420 kip x̂ + 2.03 kip ŷ

Components parallel and perpendicular to concrete surface:

To aid in bookkeeping, we define a new set of orthogonal unit vectors with ĉx pointed parallel to the surface
(down-and-right), and ĉy pointed perpendicular to the surface (up-and-right).

As before, to obtain the ĉx and ĉy measures of the force we simply dot with each of these unit vectors. The
angles in each dot-product are obtained by inspection of the figure.

~F
O
············· ĉx = (T1û + T2ŵ) ············· ĉx = T1 û ············· ĉx + T2 ŵ ············· ĉx = T1 cos(140◦) + T2 cos(40◦) = −0.766 kip

~F
O
············· ĉy = (T1û + T2ŵ) ············· ĉy = T1 û ············· ĉy + T2 ŵ ············· ĉy = T1 cos(50◦) + T2 cos(50◦) = 1.93 kip

Hence ~F
O

can be written as:
~F
O

= − 0.766 kip ĉx + 1.93 kip ĉy

(b) Use your results from the previous part to analyze the situation and determine if failure will occur.

The engineers are concerned about the “force pulling along the axis of the support”, which in our analysis is

the ĉy measure of ~F
O

. We found the ĉy measure to be 1.93 kip = 1930 lb, so we know the concrete will not
fail.

Note: It is not necessary to fully resolve a vector into components in order to determine one of them. If all
we really care about is the ĉy measure of the force, then we simply dot with ĉy:

“force along axis of support” = ~F
O
············· ĉy = T1 û ············· ĉy + T2 ŵ ············· ĉy = T1 cos(50◦) + T2 cos(50◦) = 1.93 kip

Copyright © 2011-2020 by Adam Leeper. 9



3. Vector Basics - Cross Product to Calculate Moments

(Adapted from problem 3.2.38 of Sheri Sheppard’s textbook.)

The figure at right shows a cable connected to a lever. The tension in
the cable is T = 610 N. Determine the moment about point O created
by the force of the cable acting on the lever. Express your answer in
terms of unit vectors x̂, ŷ, and ẑ which are directed along the axes
shown.

We’ll denote the force applied at point B as ~F
B

. Using the definition, the moment of this force about point O is:

~M
~F

B
/O

, O~rB × ~F
B

Position vector: The position vector is formed by direct inspection of the figure. If this is not obvious to you,
place your finger at O and trace a path to B, writing down the distance and direction you moved at each step.

O~rB = O~rA + A~rB = 400 mm ẑ + 600 mm ŷ

Force vector: We are given the tension in the cable, so we know the magnitude of the force is 610 N. We do
not know the direction, but we have geometric information in the figure we can use to find the direction. The line
of action of the force passes through points B and C, so to form the force we need the unit vector from B to C,
denoted ûC/B.

~F
B

= T ûC/B = T
B~rC∣∣B~rC∣∣

As before, we find B~rC by inspection:

B~rC = O~rC + B~rO = (350 x̂ + 300 ŷ) + (−600 ŷ + − 400 ẑ) = 350 mm x̂ + − 300 mm ŷ + − 400 mm ẑ

And we find the magnitude from the definition:

|B~rC | ,
√

B~rC ············· B~rC =
√

(350 mm)2 + (−300 mm)2 + (−400 mm)2︸ ︷︷ ︸
(Valid for vector expressed in a single, unitary orthogonal basis.)

= 610.3 mm

Hence, the force vector is

~F
B

= T ûC/B = (610 N)
(350 mm x̂ + − 300 mm ŷ + − 400 mm ẑ)

610.3 mm
≈ 350 N x̂ + − 300 N ŷ + − 400 N ẑ.

Finally, we have the ingredients to compute the moment:

~M
~F

B
/O

, O~rB × ~F
B

= (600 mm ŷ + 400 mm ẑ) × (350 N x̂ + − 300 N ŷ + − 400 N ẑ)

= ( (600)(350)���
�:−ẑ

ŷ × x̂ + (600)(−300)���
�:~0

ŷ × ŷ + (600)(−400)��
��:+x̂

ŷ × ẑ +

(400)(350)��
��:+ŷ

ẑ × x̂ + (400)(−300)���
�:−x̂

ẑ × ŷ + (400)(−400)���:
~0

ẑ × ẑ ) N mm

= (−120, 000 x̂ + 140, 000 ŷ + − 210, 000 ẑ) N mm

= (−120 x̂ + 140 ŷ + − 210 ẑ) N m
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Addendum: A force is applied at a specific physical point of a body, which is why moments are defined using a
position vector to the point of application. However, mathematically we can use any point that is on the force’s
“line of action”. In some problems this can dramatically simplify the math.

In this problem the math isn’t any simpler, but we can show that picking the point on the ground gives us the same
result as before (note the use of the equal sign; this is not a definition):

~M
~F

B
/O

= O~rC × ~F
B

= (350 mm x̂ + 300 mm ŷ) × (350 N x̂ + − 300 N ŷ + − 400 N ẑ)

= ( (350)(350)���
�:~0

x̂ × x̂ + (350)(−300)��
��:+ẑ

x̂ × ŷ + (350)(−400)��
��:−ŷ

x̂ × ẑ +

(300)(350)���
�:−ẑ

ŷ × x̂ + (300)(−300)���
�:~0

ŷ × ŷ + (300)(−400)��
��:+x̂

ŷ × ẑ ) N mm

= (−120, 000 x̂ + 140, 000 ŷ + − 210, 000 ẑ) N mm

= (−120 x̂ + 140 ŷ + − 210 ẑ) N m
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4. Vector Equations - Solving for Unknowns (Statics)

Consider the block on a smooth inclined plane as shown at right. Let system S be
the block.

Draw a FBD of S. State your assumptions.

• Only consider gravity from earth (down).
• Spring is linear.
• Block is modeled as a particle.
• Smooth plane has negligible friction.
• Air, thermal, and other effects negligible.

Using ~F
S

= ~0 might lead to the following vector equation (based on assumptions about relevant forces):

−kx b̂x + FN b̂y − mg n̂y = ~0

Note: It is advantageous to express vectors in the simplest terms possible. Hence, two bases were introduced, one
aligned with the inclined plane, and one aligned with gravity, to avoid having trig functions appear in the vector
equation. Avoiding trig functions improves efficiency and helps reduce errors.

Given the equation above:

(a) Find a scalar expression for FN (the magnitude of the “normal force” on the block from the plane).

The unknown we want is in a b̂y term, so we’ll dot both sides with b̂y.

b̂y · (−kx b̂x + FN b̂y − mg n̂y) = b̂y ·~0

−kx b̂y · b̂x + FN b̂y · b̂y − mg b̂y · n̂y = b̂y ·~0 ← Find dot products from definition.

0 + FN − mg cos(θ) = 0

FN = mg cos(θ)

(b) Find a scalar expression for x. (This gives the equilibrium stretch or compression of the spring).

The unknown we want is in a b̂x term, so we’ll dot both sides with b̂x.

b̂x · (−kx b̂x + FN b̂y − mg n̂y) = b̂x ·~0

−kx b̂x · b̂x + FN b̂x · b̂y − mg b̂x · n̂y = b̂x ·~0 ← Find dot products from definition.

−kx + 0 − mg sin(θ) = 0

x = −m
k
g sin(θ)

Note 1: In general, it is not correct to “equate components” to create scalar equations from a vector equation. In
this example, doing so would lead to the (totally wrong) equations −kx = 0, FN = 0, and −mg = 0. This idea is
taught in calculus because it works when the directions in the equation are mutually orthogonal, but it clearly breaks
when there are non- orthogonal vectors and/or multiple bases.

Note 2: In this example, the gravity force was not resolved into b̂x and b̂y components in the vector equation.
Instead, the familiar mg cos(θ) and mg sin(θ) terms came from dotting. This is a key insight to be able to do complex
and/or 3D problems efficiently. Resolving into components using trig may be nearly impossible at times, but looking
up individual dot-products in one or more rotation tables is easy.
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Chapter 2

Rotation Tables

1. Vector Geometry - Position Measures

Consider the robot arm shown. Frames A, B, C (shown) and frame N (not shown) each have fixed in them right-handed,

orthogonal unit vectors âxyz, b̂xyz, ĉxyz, and n̂xyz, respectively. The relevant lengths L1, L2, and L3 are shown on the
drawing.

You are given the vector from a point No (not shown) on the robot’s base to the elbow point Ao is No~rAo = dy n̂y+dz n̂z.

(a) By inspection, write the position vector from the
elbow point Ao to the finger tip Q, using an efficient
combination of basis vectors.

Ao~rQ = L1 âx + L2 b̂x + L3 ĉy

(b) Write the position vector from No to Q, first as a sum of
two or more basis-independent position vectors, then
in terms of any given unit vectors.

No~rQ =
Ao ~r

Q
+

No ~r
Ao

No~rQ = dy n̂y + dz n̂z + L1 âx + L2 b̂x + L3 ĉy

(c) Your team-mate asks you for the “x, y, z coordinates” of Q’s position from No in frame N . Explain/show which
vector operations you would do to get these measures of No~rQ. (You do not need to complete the calculation; in
fact, you don’t have enough information to do so.)

n̂x measure = (n̂x ·············No~rQ)

n̂y measure = (n̂y ·············No~rQ)

n̂z measure = (n̂z ·············No~rQ)

Note: Can’t complete the dot products, need rotation matrices relating the frames.

(d) A heavy ball held at Q exerts a downward force ~F
Q

= −W n̂z on the robot arm. Explain/show which (one) vector

operation you would do to get the moment of this force about Ao, that is, ~M
FQ/Ao

.

~M
FQ/Ao

, Ao~rQ×~F
Q

= (L1 âx + L2 b̂x + L3 ĉy)× (−W n̂z)

Note: Could distribute, but can’t complete the cross products. Need rotation matrices relating the frames.
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2. Rotation Tables - Simple Rotation

Frames A and B , with right-handed orthogonal unit vectors âxyz, and b̂xyz, respectively, are initially aligned. Frame
B is then rotated by an angle φ about the positive âx axis.

(a) Sketch âxyz, b̂xyz, and φ on the figure below. (b) Write a rotation table relating A and B .

ARB b̂x b̂y b̂z

âx 1 0 0

ây 0 cos(φ) − sin(φ)

âz 0 sin(φ) cos(φ)

3. Rotation Tables - Matrix Manipulation

In computer graphics and robotics, a scene graph is a structure which holds position and rotation information for a set
of frames. Typically this structure gives you rotation matrices relating each frame to a single common “world” frame;
it is then up to you to compute the quantities you need for a particular use.

For this problem, assume you obtain from the scene graph the rotation matrices NRA, NRB, NRC which relate the
right-handed, orthogonal unit vectors of frames N , A, B , and C .

(a) Given NRA, explain how to obtain the inverse rotation matrix, ARN.

You transpose NRA to get ARN. In other words, ARN = (NRA)T .

Note: In linear algebra, a matrix with the property NRA ∗ ARN = I is called an orthogonal matrix.

(b) Show how to use the above quantities to form the rotation matrix relating frame A and C.

ARC = ARN ∗ NRC = (NRA)T ∗ NRC
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4. Rotation Tables - Frame Conventions

Creating a flight simulator requires cooperation of engineers from multiple disciplines (graphics and aeronautics) that
have different frame conventions. Many 3D graphics applications consider the “world” frame to be defined as shown
by vector basis C , where the “ground” plane is defined by ĉx and ĉz, with ĉy pointing opposite gravity. Meanwhile,

aeronautics uses a frame convention shown by vector basis D , where d̂x points north, d̂y points east, and d̂z points in
the direction of gravity (this convention is often called NED, for “north-east-down”). For clarity, in the picture below

the frames C and D are “aligned” but use a different convention. Note ĉz is “out” of the page and d̂x is “in.”

To properly display aeronautics simulation data (computed and expressed in D) in the graphics engine, the data must

be re-expressed using the basis vectors of frame C . Form the rotation table cRd relating ĉx, ĉy, ĉz to d̂x, d̂y, d̂z.
Note: The elements of the rotation table are numbers (no symbols).

CRD d̂x d̂y d̂z

ĉx 0 1 0

ĉy 0 0 −1
ĉz −1 0 0
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5. Rotation Tables - Mixed-Basis Vector Operations

Let n̂xyz and b̂xyz be two distinct sets of right-handed, orthogonal unit vectors related by
the rotation table nRb given at right. The entries cij in the matrix represent scalars.

Assume you are given a vector P~rQ = 3 n̂x + 2 b̂z.

nRb b̂x b̂y b̂z

n̂x cxx cxy cxz
n̂y cyx cyy cyz
n̂z czx czy czz

(a) Calculate P~rQ ············· P~rQ, expressing your answer in terms of the coefficients cij .

P~rQ · P~rQ = (3 n̂x + 2 b̂z) · (3 n̂x + 2 b̂z)

= 9 n̂x ············· n̂x + 6 n̂x ············· b̂z + 6 b̂z ············· n̂x + 4 b̂z ············· b̂z distribute, preserving order

= 9 n̂x ············· n̂x + 12 n̂x ············· b̂z + 4 b̂z ············· b̂z dot product is commutative

= 9 (1) + 12 (c13) + 4 (1) look up dot products

= 13 + 12 c13 simplify

(b) Calculate n̂z× P~rQ, expressing your answer in terms of n̂xyz and the coefficients cij .

n̂z× P~rQ = n̂z× (3 n̂x + 2 b̂z)

= 3 n̂z× n̂x + 2 n̂z× b̂z distribute, preserve order

= 3 n̂z× n̂x + 2 n̂z× (c13 n̂x + c23 n̂y + c33 n̂z) convert b̂z with table

= 3 n̂z× n̂x + 2 c13 n̂z× n̂x + 2 c23 n̂z× n̂y + 2 c33 n̂z× n̂z distribute, preserve order

= 3 n̂y + 2 c13 n̂y − 2 c23 n̂x + ~0 evaluate cross products

= − 2 c23 n̂x + (3 + 2 c13) n̂y simplify
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Chapter 3

Velocity and Acceleration
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3.1 Example: Deriving Kinematics Relationships for “Circular” Motion

In this section we show clearly how to derive velocity and acceleration for a parti-
cle whose position is described by polar coordinates r and θ. In many “traditional”
textbooks (Hibbeler, Beer and Johnson, etc.) the mechanics of vector derivatives with
rotating frames are not taught, so the kinematics expressions are simply given. How-
ever, deriving these quantities is a straight-forward application of the golden rule.

To ground the development with a concrete example, consider the figure shown at right.
The disk is modeled as a rigid body B , and its center Bo is fixed in a Newtonian frame
N and co-incident with No. We define our usual right-handed, orthogonal unit vectors
n̂x, n̂y, n̂z fixed in N with n̂x horizontally right and n̂y vertically upward. Similarly,

b̂x, b̂y, b̂z are fixed in B with b̂z = n̂z and b̂x pointing from Bo to Q.

3.1.1 General Polar Kinematics

We will differentiate the position vector to find velocity and acceleration (note the “two-points-fixed” formulas don’t apply
because Q is not fixed on B). We will need the angular velocity and angular acceleration of B in N , which is formed by

inspection since B has a simple rotation in N about b̂z:
N~ωωωωωωωωωωωωω

B
= θ̇ b̂z and

N~ααααααααααααα
B

= θ̈ b̂z.

Acceleration via Differentiation of Position Vector

O~rP = r b̂x

N~vP ,
Nd
dt

( O~rP ) This is the definition.

=
Nd
dt

( r b̂x) So we need to differentiate this in N .

=
Bd
dt

( r b̂x) +
N~ωωωωωωωωωωωωω

B × ( r b̂x) It’s easier to differentiate this in B , so we use golden rule to convert.

= ṙ b̂x + (θ̇ b̂z)× ( r b̂x) b̂x is fixed in B , so we can just differentiate the scalar portion.

= ṙ b̂x + rθ̇ b̂y And finally we do the cross product.

N~aP ,
Nd
dt

( N~vP ) This is the definition.

=
Nd
dt

( ṙ b̂x + rθ̇ b̂y) So we need to differentiate this in N .

=
Bd
dt

( ṙ b̂x + rθ̇ b̂y) +
N~ωωωωωωωωωωωωω

B × ( ṙ b̂x + rθ̇ b̂y) Easier to differentiate in B , so apply golden rule.

= ( r̈ b̂x + (ṙθ̇ + rθ̈) b̂y) + (θ̇ b̂z)× ( ṙ b̂x + rθ̇ b̂y) Differentiate scalars (remember product rule!).

= ( r̈ b̂x + (ṙθ̇ + rθ̈) b̂y) + (ṙθ̇ (b̂y) + rθ̇2 (−b̂x)) Do cross product.

= ( r̈ − rθ̇2) b̂x + (rθ̈ + 2ṙθ̇) b̂y Collect terms.

Now that we have general expressions velocity and acceleration of a particle in planar motion expressed in polar coordinates,
let’s see how this can be specialized for some common scenarios.

3.1.2 Curvilinear Motion: Polar/Cylindrical Components

Paraphrasing loosely, a “traditional” book may say something like:

“For problems described by polar coordinates, you must assign a coordinate system with êr radially
outward, êθ perpendicular to êr and in the direction of increasing θ, and êz = êr × êθ.” (In our

example, êr = b̂x, êθ = b̂y, and êz = b̂z.)

Then you would be given the following scalar values for the measures/components of acceleration:

ar = r̈ − rθ̇2

aθ = rθ̈ + 2ṙθ̇

How do we get there from our expressions for N~vQ and N~aQ? In this class we get measures of a vector by dotting. We can

dot N~aQ with (êr = b̂x) and (êθ = b̂y) to get these same expressions:
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ar = N~aQ · êr = r̈ − rθ̇2

aθ = N~aQ · êθ = rθ̈ + 2ṙθ̇

It is ok to use these pre-computed expressions if you are sure that you have the signs correct. However, it is often convenient
to assign frames in a different way (for example, in problem 7.10 frame B has êr = b̂y and êθ = b̂x and in problem 7.9 and

7.16 frame B has êr = −b̂y and êθ = b̂x) so you cannot blindly use these expressions without accounting for this.

3.1.3 Curvilinear Motion: Normal-Tangential Components

Paraphrasing loosely, a “traditional” book may say something like:

“When the path of a particle is known, it is possible to approximate its motion during a small
interval as motion along a circular arc with radius r. You must assign a coordinate system with ûn

radially inward and ût tangent to the circular path in the direction of the particle’s velocity.” (In

our example, ûn = −b̂x and ût = b̂y.)

Two implicit requirements of this model are that during the short interval being considered:

• the radius of the path is constant (ṙ = r̈ = 0).

• the particle’s velocity is purely tangential, described by a scalar v, where v , N~vQ · ût.

Then you would be given the following scalar values for the measures/components of acceleration:

an = v2/r

at = v̇

How do we get there from our expressions for N~vQ and N~aQ? If we plug in ṙ = r̈ = 0 we get:

N~vQ = (0) b̂x + (rθ̇) b̂y = rθ̇ b̂y

N~aQ = (0 − rθ̇2) b̂x + (rθ̈ + 0) b̂y = − rθ̇2 b̂x + rθ̈ b̂y

Since we defined v as the particle’s tangential velocity measure, we can relate that to N~vQ by dotting with the “tangential”

unit vector ût = b̂y, and then also implicitly differentiating to get another relationship:

v , N~vQ · b̂y = rθ̇ b̂y · b̂y = rθ̇

v = rθ̇

v̇ = rθ̈

Hence we can re-write N~vQ and N~aQ by plugging in θ̇ = v/r and θ̈ = v̇/r to get:

N~vQ = v b̂y

N~aQ = − (v2/r) b̂x + v̇ b̂y

Finally, to resolve acceleration into normal-tangential measures, we can dot with (ûn = −b̂x) and (ût = b̂y).

an = N~aQ · ûn = v2/r

at = N~aQ · ût = v̇

It is ok to use these pre-computed expressions if you are sure that you have the signs correct. However, it is often convenient
to assign frames in a different way (for example, in problem 7.7 frame B has ûn = −b̂x and ût = b̂y) so you cannot blindly
use these expressions without accounting for this.
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3.2 Example: Velocity and Acceleration of a Wrecking Ball

The figure shows a crane cab A supporting a boom B that swings a wrecking ball Co. Right-handed orthogonal unit vectors
(n̂x, n̂y, n̂z), (b̂x, b̂y, b̂z), and (ĉx, ĉy, ĉz) are fixed in N , B , and C respectively, as shown.

The position vector from No to Co is

No~rCo = x n̂x + LB b̂x − LC ĉy

Quantity Symbol Type

b̂x distance between AB and BC LB Constant
ĉy distance between BC and Co LC Constant

n̂x distance between No to AB x Variable

angle between n̂x and b̂x about n̂z θB Variable
angle between n̂y and ĉy about n̂z θC Variable

1. Determine:
• the angular velocity of B in N (or, B ’s angular velocity in N ).
• the angular velocity of C in N (or, C ’s angular velocity in N ).
• the angular velocity of C in B (or, C ’s angular velocity in B).

The first two are “simple” rotations (see section 7.3.3), so angular velocity is formed by inspection. For example,

imagine θB is zero, and align your (right-hand!) fingers with b̂x = n̂x. Then mentally increase θB and curl your
fingers in the direction of rotation. Your thumb gives the direction vector associated with

N~ωωωωωωωωωωωωω
B

.

N~ωωωωωωωωωωωωω
B

= θ̇B n̂z
N~ωωωωωωωωωωωωω

C
= θ̇C n̂z

For
B~ωωωωωωωωωωωωω

C
it is easiest to use the angular velocity addition theorem (see section 7.3.4 - 7.3.5).

B~ωωωωωωωωωωωωω
C

=
B~ωωωωωωωωωωωωω

N
+

N~ωωωωωωωωωωωωω
C

= (−θ̇B + θ̇C) n̂z

2. Compute the velocity of Co in N in terms of symbols in the table and their time derivatives.

N~vCo = ẋ n̂x + LB θ̇Bb̂y + LC θ̇C ĉx

N~vCo ,
Nd
dt

No~rCo =
Nd
dt

(x n̂x + LB b̂x − LC ĉy)

We distribute first to get separate chunks to which we can then apply the golden rule:

=
Nd
dt

(x n̂x) +
Nd
dt

(LB b̂x) −
Nd
dt

(LC ĉy)

=
Nd
dt

(x n̂x) + [
Bd
dt

(LB b̂x) +
N~ωωωωωωωωωωωωω

B × (LB b̂x) ] − [
Cd
dt

(LC ĉy) +
N~ωωωωωωωωωωωωω

C × (LC ĉy) ]

=
Nd
dt

(x n̂x) + [
Bd
dt

(LB b̂x) + (θ̇B n̂z)× (LB b̂x) ] − [
Cd
dt

(LC ĉy) + (θ̇C n̂z)× (LC ĉy) ]

= ẋ n̂x + [ 0 + LB θ̇B(b̂y) ] − [ 0 + LC θ̇C(−ĉx) ]

= ẋ n̂x + LB θ̇Bb̂y + LC θ̇C ĉx

Intuition Check

Take a moment to mentally visualize the movement of Co caused by each “degree-of-freedom” (loosely speaking: each
variable), and check that the terms of N~vCo seem to describe that motion.

Checking Consistency of the Result

Vectors (like anything) must have the same units in order to add, so this is an easy way to check the result. It’s a
velocity, so each term must have the dimensions of length per time. In SI units, the first term is m

s
and the second and

third terms are m ∗ rad
s

, which is equivalent to m
s

since radians are “unit-less”.
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3. Compute the acceleration of Co in N . If it helps, you can use N~aBc = ẍ n̂x + LB θ̈B b̂y − LB(θ̇B)2 b̂x.

N~aCo = ẍ n̂x + LB θ̈B b̂y − LB(θ̇B)2 b̂x + LC θ̈C ĉx + LC(θ̇C)2 ĉy
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Solution 1: Differentiation of Velocity

Differentiating the result from the previous part:

N~aCo ,
Nd
dt

N~vCo

=
Nd
dt

(ẋ n̂x + LB θ̇B b̂y + LC θ̇C ĉx)

=
Nd
dt

(ẋ n̂x) +
Nd
dt

(LB θ̇B b̂y) +
Nd
dt

(LC θ̇C ĉx)

=
Nd
dt

(ẋ n̂x) + [
Bd
dt

(LB θ̇B b̂y) +
N~ωωωωωωωωωωωωω

B × (LB θ̇B b̂y) ] + [
cd
dt

(LC θ̇C ĉx) +
N~ωωωωωωωωωωωωω

C × (LC θ̇C ĉx) ]

=
Nd
dt

(ẋ n̂x) + [
Bd
dt

(LB θ̇B b̂y) +
N~ωωωωωωωωωωωωω

B × (LB θ̇B b̂y) ] + [
cd
dt

(LC θ̇C ĉx) +
N~ωωωωωωωωωωωωω

C × (LC θ̇C ĉx) ]

= ẍ n̂x + LB θ̈B b̂y − LB(θ̇B)2 b̂x + LC θ̈C ĉx + LC(θ̇C)2 ĉy

Solution 2: Using Formulas for Two Points Fixed in a Rigid Frame

Since BC and Co are both fixed in frame C , we can use the formulas from Mitiguy section 8.2. Verify that you
understand how the general formula was adapted to the specific frames and points in this problem to obtain the
equation below.

N~aCo = N~aBc +
N~ααααααααααααα

C ×BC~rCo +
N~ωωωωωωωωωωωωω

C × (
N~ωωωωωωωωωωωωω

C ×BC~rCo)

We’ll form each term separately:

• The first term (N~aBc) was given.

• For the second term we need
N~ααααααααααααα

C ,
Nd
dt

N~ωωωωωωωωωωωωω
C

= θ̈C n̂z, so then we can calculate:

N~ααααααααααααα
C × BC~rCo = θ̈C n̂z × (−LC ĉy) = LC θ̈C ĉx

• The third term is:

N~ωωωωωωωωωωωωω
C × (

N~ωωωωωωωωωωωωω
C × BC~rCo) = θ̇C n̂z × (θ̇C n̂z × (−LC ĉy)) = θ̇C n̂z × (LC θ̇C ĉx) = LC(θ̇C)2 ĉy

Putting all the pieces together we have:

N~aCo = ẍ n̂x + LB θ̈B b̂y − LB(θ̇B)2 b̂x + LC θ̈C ĉx + LC(θ̇C)2 ĉy

Checking Consistency of the Result

Vectors (like anything) must have the same units in order to add, so this is an easy way to check the result.

• ẍ = d
dt

( d
dt
x) has dimensions of ((length/time)/time). In SI units, that would be m/s2.

• LB and LC are both lengths (m), and θ̈B and θ̈C are both the second derivative of an angle (rad/s2). Radians
are “unit-less”, so LB θ̈B and LC θ̈C both have units of m/s2.

• θ̇B and θ̇C are first derivatives of an angle (rad/s), so the units on LB(θ̇B)2 and LC(θ̇C)2 are both m/s2.

Finally, let’s identify each term (see section 8.5) and check that it is consistent with the picture.

• The first term says that changes in x cause Co to accelerate in the n̂x direction.

• The second term says there is an acceleration “tangent” to the rotation described by θB.

• The third term is due to the first-derivative of θB (i.e. due to B ’s angular velocity in N ). Notice that it acts
“inward” toward the source of the rotation; this is a “centripetal” term.

• The fourth term says there is an acceleration “tangent” to the rotation described by θC .

• The fifth term is due to the first-derivative of θC (i.e. due to C ’s angular velocity in N ). Notice that it acts
“inward” toward the source of the rotation; this is another “centripetal” term.
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3.3 Example: Dynamics of a Rider on a Ferris Wheel

The figure at right shows a Ferris wheel. We take the ground to be a New-
tonian reference frame N . Right-handed, orthogonal unit-vectors n̂x, n̂y, n̂z

are fixed in N as shown (n̂x is out of the page).

The Ferris wheel B spins counter-clockwise at a variable rate ω and has
chairs located at a radius R from the center point Bo. The rider sits on
(and is fully supported by) a bathroom scale. We simplify the problem by
modeling the rider as a particle Q and assuming that the seat is always
exactly horizontal.

Hint: The concept of a rigid frame B is needed, but unit vectors fixed on
B are not needed. Instead, use formulas for two points fixed on a rigid
body.

1. Write down the angular velocity and angular acceleration of B in N .

N~ωωωωωωωωωωωωω
B

= ω n̂x
N~ααααααααααααα

B
= ω̇ n̂x

The Ferris wheel is undergoing “simple” rotation (see section 7.3.3), so angular velocity is formed by inspection. The
rotation rate is given above as the variable ω, and the direction is picked by curling the fingers of your right hand to
follow the counter-clockwise rotation, resulting in your thumb pointing out of the page in the +n̂x direction.

For angular acceleration we use the definition,
N~ααααααααααααα

B ,
Nd
dt

N~ωωωωωωωωωωωωω
B

, which is straight-forward since n̂x is fixed in N .

2. Find an expression for the rider’s acceleration in N at the instant when he is at the top of the Ferris wheel, in terms

of previously defined symbols and n̂x, n̂y, n̂z. Hint: What is Bo~rQ at that instant?

N~aQ = − ω̇R n̂y − ω2R n̂z

Point Bo is fixed in N , so we might be tempted to form the position vector, Bo~rQ = R n̂z, and differentiate. However,
this vector is only valid at the instant Q is at the top of the wheel (a short time before or after this instant, the
direction from Bo to Q would include some n̂y component), so it is invalid to differentiate it. (As we have done in
other problems, one approach would be to introduce a basis fixed on B so that Bo~rQ could be written in a form that
is valid for all time.)

Instead, since Bo and Q are both fixed on B , the equations for velocity and acceleration of two points fixed on a rigid
body apply (Mitiguy section 8.2).

N~aQ = N~aBo +
N~ααααααααααααα

B ×Bo~rQ +
N~ωωωωωωωωωωωωω

B × (
N~ωωωωωωωωωωωωω

B ×Bo~rQ) General equation valid for all time.

= ~0 + ω̇ n̂x×R n̂z + ω n̂x× (ω n̂x×R n̂z) Valid at this instant due to expression for Bo~rQ.

= ~0 + ω̇ R (−n̂y) + ω n̂x× (ω R(−n̂y))

= ~0 + ω̇ R (−n̂y) + ω2 R (−n̂z)

3. The forces on the rider might be modeled as: a horizontal friction force Fy and vertical support force Fz from the scale;

and gravity. Hence, ~F
Q

= Fy n̂y + (Fz −mQg) n̂z. Plug ~F
Q

and your result for N~aQ into Newton’s law to get a vector
equation, then dot with a unit vector to get a scalar equation relating Fz and ω.

~F
Q

= mQ ∗ N~aQ

Fy n̂y + (Fz −mQg) n̂z = mQ ∗ ( − ω̇R n̂y − ω2R n̂z) Fz is in an n̂z term, so we’ll dot with n̂z.

Fz −mQg = − mQ ∗ ω2R This could be solved for any scalar of interest.
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3.4 Example: Acceleration of a Car (2D)

A car (rigid frame C ) is traveling on a flat road (assumed to be a Newtonian frame N ). Frames N and C have right-handed,
orthogonal unit vectors n̂x, n̂y, n̂z and ĉx, ĉy, ĉz fixed in N and C , respectively.

• n̂x points east, n̂y points north, n̂z points “up” away from the ground.

• ĉx points “forward” in the car, ĉy points “left” from the car, and ĉz = n̂z.

• You are intentionally not given the angle between n̂x and ĉx; with the golden rule you don’t need it.

Since we have assumed the car rotates only about (n̂z = ĉz), its angular velocity in N could be described by one variable,
N~ωωωωωωωωωωωωω

C
= ωz ĉz. The car tires roll forward and can slide sideways, so the velocity in N of the car’s center of mass can be

described by two parameters, N~vCcm = vx ĉx + vy ĉy. Quantities vx, vy, and ωz may vary with time.

1. Differentiate N~vCcm in N to get the acceleration of the car’s center of mass in N .

N~aCcm ,
NdN~vCcm

dt
= (v̇x − ωzvy) ĉx + (v̇y + ωzvx) ĉy

All components are expressed in C , so we don’t need to distribute. We’ll just apply the golden rule:

=
Cd
dt

(vx ĉx + vy ĉy) +
N~ωωωωωωωωωωωωω

C × (vx ĉx + vy ĉy)

=
Cd
dt

(vx ĉx + vy ĉy) + (ωz ĉz)× (vx ĉx + vy ĉy)

= [ v̇x ĉx + v̇y ĉy ] + [ ωzvx ĉy + ωzvy(−ĉx) ]

= (v̇x − ωzvy) ĉx + (v̇y + ωzvx) ĉy

Take a moment to mentally picture what the presence of each variable tells you about the acceleration.

2. At a certain instant, the car’s speedometer measures 60 mph, the tires are not sliding, and the gyro measures ωz as 0.5
rad/sec. Calculate and sketch the radius of curvature of Ccm’s path at this instant.

Since the tires are not sliding, the non-zero value of ωz
implies the car is driving around a curve. We make use of a
little geometry to see the relationship between speed along
the arc, angular velocity, and radius of curvature.

ρ = vx∆t

ωz∆t
= 60 mph

0.5 rad/s
= 26.82 m/s

0.5 rad/s
= 53.6 meters.

3. Now assume the car travels at a constant forward speed (v̇x = 0) and does not slide (vy = v̇y = 0). Using your result
from (a), does constant speed imply zero acceleration?

N~aCcm = (0 − ωz ∗ 0) ĉx + (0 + ωzvx) ĉy

= 0 ĉx + ωzvx ĉy

What does this result say? It says the Ccm has non-zero acceleration as long as there is simultaneously a non-zero
speed and a non-zero rate of rotation, even if they are both constant (not changing).

Note that if we do the substitution wz = vx/ρ based on the scenario in (b), then we get

N~aCcm = (
vx
ρ

)vx ĉy =
v2
x

ρ
ĉy

Dotting with ĉy gives the magnitude of “centripetal” acceleration, which will be familiar from introductory physics.
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Chapter 4

Kinematic Constraints

4.1 Common Constraints

There are some common constraints that arise in “typical” engineering problems. The Mitiguy book describes constraints in
abstract, but this handout attempts to give an intuition for some specific examples of constraints.

4.1.1 Specified Relationships

When one scalar a is a known function of another scalar b, substitution is used to eliminate one of the variables. Implicit
differentiation can be used to relate the derivatives, for example ṙ = f(θ̇) and r̈ = g(θ̈), in order to eliminate r, ṙ, and r̈.

Some common examples include:

• cam-followers, where the cam profile is given as an explicit relationship between r and θ.
• rigid slots, where the profile is known function of a variable.

Examples: (borrowed from Hibbeler 12th Edition)

4.1.2 Pin or hinge constraints

A pin or hinge dictates that the two points on two separate bodies (or frames) that are pinned together must have the same
position, velocity, and acceleration. Hence, the constraints are:

AB~rBA = ~0

AnyFrame~vAB = AnyFrame~vBA

AnyFrame ~aAB = AnyFrame ~aBA

Example: Mitiguy Homework Problem 4.16 shows a position constraint.
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4.1.3 Rolling

When body B rolls on body A, the instantaneous contact points must have the same velocity (but NOT the same
acceleration!). Hence, the the motion constraint is:

AnyFrame~vAB = AnyFrame~vBA

Examples: All of Mitiguy Homework Set 8.

Examples: (borrowed from Hibbeler 12th Edition)

4.1.4 Slots

In a mechanism with slots, the physical insight is that the slot places a constraint on motion perpendicular to the slot. That
is, the point in the slot and the adjacent point of the slot must have the same velocity and acceleration in the direction
û⊥ perpendicular to the slot at that instant. Hence the constraints are:

(AnyFrame~vAB ) · û⊥ = (AnyFrame~vBA) · û⊥

(AnyFrame ~aAB ) · û⊥ = (AnyFrame ~aBA) · û⊥

Examples: (borrowed from Hibbeler 12th Edition)
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4.2 Example: Kinematic Analysis for a Slider-Crank Mechanism

The following two problems are typical EIT-style slider-crank problems. These problems are sometimes categorized as
“relative motion analysis” and/or ”instant-center” methods in traditional textbooks. The purpose of this handout is to
demonstrate how to solve this variety of planar kinematics problems without resorting to graphical instant-center methods.
The solutions to the two problems could probably be combined and generalized to a set of formulas based on the lengths of
the links and configuration angles, but that would defeat the purpose of knowing how to do general kinematics!

4.2.1 Relating Velocity and Angular Velocity

The figure below shows a slider-crank mechanism. If member AB has a constant angular velocity of 3 radians/sec clockwise,
the velocity of slider C at the instant shown is:

a. 12 in/sec

b. 9 in/sec

c. 16 in/sec

d. 15 in/sec

e. zero (it is momentarily at rest)

Solution: The traditional approach to this problem involves sketching on the picture to graphically find a point that is the
instant center of rotation for member BC. However, we can solve it in a more methodical way by considering the velocity
equation for two points fixed on a rigid body.

Let’s re-label the drawing using our notation style.
Link A is connected to N by a hinge at Ao and to
link B by a hinge at AB. Link C is modeled as
a particle, and is connected to B by a hinge. As
suggested by the picture, C is constrained to slide
in the slot horizontally.

For convenience, we define our usual right-handed, orthogonal unit vectors fixed in N with n̂x horizontally right and n̂y

vertically upward. Let A have similar unit vectors with âz = n̂z and âx pointing from Ao to AB, and likewise B has b̂z = n̂z

and b̂x pointing from AB to C. Then we can write
N~ωωωωωωωωωωωωω

A
= −ωA n̂z and

N~ωωωωωωωωωωωωω
B

= −ωB n̂z.

Our desired unknown is the measure of C’s velocity in the n̂x direction. To get there, we need to know something about the
motion of link B , which means we need to know the velocity of AB. Fortunately, since we know the motion of link A we can
directly compute the velocity of point AB using the equation for two points fixed on a rigid body:

N~vAB = N~vAo +
N~ωωωωωωωωωωωωω

A× Ao~rAB = ~0 + (−ωA n̂z)× (LA âx)

And similarly we can relate the velocity of point AB and point C.

N~vC = N~vAB +
N~ωωωωωωωωωωωωω

B × AB~rC

vx n̂x + vy n̂y = (−ωA n̂z)× (LA âx) + (−ωB n̂z)× (LB b̂x)

vx n̂x + vy n̂y = (−ωA LA) ây + (−ωB LB) b̂y

In the above equation there are 3 unknowns (vy, vx, ωB). We can get 2 scalar equations by dotting with n̂y and n̂x, and a
third equation by considering the slot constraint, arguing that it enforces vy = 0.

vy = 0

vy = (−ωA LA) ây · n̂y + (−ωB LB) b̂y · n̂y

vx = (−ωA LA) ây · n̂x + (−ωB LB) b̂y · n̂x
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The lengths are calculated from the picture:

LA =
√

32 + 42 = 5 LB =
√

42 + 92 = 9.85

Finally, the simple rotation matrices NRA and NRB take the form:

NRA âx ây âz

n̂x cos(θA) − sin(θA) 0

n̂y sin(θA) cos(θA) 0

n̂z 0 0 1

BRN n̂x n̂y n̂z

b̂x cos(θB) − sin(θB) 0

b̂y sin(θB) cos(θB) 0

b̂z 0 0 1

which can be filled in either by using trig to compute θA = 53.13◦ and θB = 23.96◦, or by using “soh cah toa” to replace the
trig functions by the appropriate ratios:

nRa âx ây âz

n̂x 3/5 −4/5 0
n̂y 4/5 3/5 0
n̂z 0 0 1

bRn n̂x n̂y n̂z

b̂x 9/9.85 −4/9.85 0

b̂y 4/9.85 9/9.85 0

b̂z 0 0 1
So our system of equations reduces to:

0 = (−ωA LA) cos(θA) + (−ωB LB) (cos(θB))

vx = (−ωA LA) (− sin(θA)) + (−ωB LB) (sin(θB))

which is solved as:

wB = (−ωA
LA
LB

) (
3

5
) (

9.85

9
) = −3

rad

s
∗ 5 in

9.85 in
∗ 3

5
∗ 9.85

9
= −1

rad

s

vx = (−3
rad

s
) (5 in) (−4

5
) + (1

rad

s
) (9.85 in) (

4

9.85
) = 16

in

s

It seems our result matches choice (c) in the question, which is indeed the correct answer.

It is worth noting that this analysis is quite general; similar slider-crank problems can be solved by computing the lengths
and rotation tables given whatever new pictorial geometry is presented.
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4.2.2 Relating Acceleration and Angular Acceleration

Below is shown a mechanism consisting of a rotating disk AB, a link BC, and a slider at C. The wheel AB has a constant
angular velocity of 6 radians/sec. At the instant shown, the link BC is translating (its angular velocity is zero). The angular
acceleration of link BC is:

a. 0

b. 15 rad/sec2 CCW

c. 9 rad/sec2 CW

d. 6 rad/sec2 CCW

e. 13 rad/sec2 CW

Solution:

We will once again use the two-points-fixed equations to ana-
lyze the kinematics, although this time we will need to use the
acceleration equation as well as the velocity equation.

Let’s re-label the drawing using our notation style. The config-
uration of the mechanism has been changed slightly to better
show the angles and basis vectors we’ve assigned. Not shown
on the drawing are rA, the radius of the wheel, and LB, the
length of link B .

For convenience, we define our usual right-handed, orthogonal unit vectors fixed in N with n̂x horizontally right and n̂y

vertically upward. Let A have similar unit vectors with âz = n̂z and âx pointing from Ao to AB, and likewise B has b̂z = n̂z

and b̂x pointing from AB to C.

Going with the clockwise convention suggested in the picture, we express the angular velocities and angular accelerations as:
N~ωωωωωωωωωωωωω

A
= −ωA âz

N~ααααααααααααα
A

= −ω̇A âz

N~ωωωωωωωωωωωωω
B

= −ωB b̂z

N~ααααααααααααα
B

= −ω̇B b̂z

As before, the simple rotation matrices NRA and NRB take the form

NRA âx ây âz

n̂x cos(θA) − sin(θA) 0

n̂y sin(θA) cos(θA) 0

n̂z 0 0 1

BRN n̂x n̂y n̂z

b̂x cos(θB) − sin(θB) 0

b̂y sin(θB) cos(θB) 0

b̂z 0 0 1

where θA = 90◦ and θB = 22.62◦ at the instant considered in the problem (found using trig).

For link B , we can relate its angular acceleration to the acceleration of the end-points by:

N~aC = N~aAB +
N~ααααααααααααα

B × AB~rC +
N~ωωωωωωωωωωωωω

B × (
N~ωωωωωωωωωωωωω

B × AB~rC) (4.1)

which suggests that we need to find the acceleration of AB and of C, and the angular velocity of B .

We can get the acceleration of AB by:

N~aAB = N~aAo +
N~ααααααααααααα

A× Ao~rAB +
N~ωωωωωωωωωωωωω

A× (
N~ωωωωωωωωωωωωω

A× Ao~rAB )

N~aAB = ~0 + (−ω̇A âz)× (rA âx) + − ωA âz× (−ωA âz× rA âx)

N~aAB = − rAω̇A ây − rAω
2
A âx (4.2)

Plugging equation (4.2) into (4.1), and assuming that N~aC is of the form N~aC = ax n̂x + 0 n̂y (by physical reasoning, the
slot constraint enforces that there is only a horizontal component) we get:

ax n̂x + 0 n̂y = − rAω̇A ây − rAω
2
A âx + (−ω̇B b̂z)×LB b̂x + (−ωB b̂z)× (−ωB b̂z×LB b̂x)
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ax n̂x + 0 n̂y = − rAω̇A ây − rAω
2
A âx − ω̇BLB b̂y − ω2

BLB b̂x (4.3)

Note that, so far, we haven’t assumed a constant rate of rotation of A. Now we can simplify our expression by plugging in
ω̇A = 0 and ωB = 0 as stated in the problem:

ax n̂x = − rAω
2
A âx − ω̇BLB b̂y (4.4)

We are left with two unknowns. Dotting equation 4.4 with any two independent unit vectors will give us two independent
scalar equations; let’s pick n̂x and n̂y for simple look-up in the rotation tables:

dot w/ n̂x:
dot w/ n̂y:

ax = − rAω
2
A cos(θA) − ω̇BLB sin(θB)

0 = − rAω
2
A sin(θA) − ω̇BLB cos(θB)

Plugging in θA = 90◦, θB = 22.62◦, ωA = 6 rad/s, rA = 100 mm, and LB = 260 mm, we find:

ω̇B = − 15 rad/s2

ax = 1500 mm/s2 = 1.5 m/s2

And finally we find that answer (b) is the correct choice:

N~ααααααααααααα
B

= −ω̇B b̂z = +15 rad/s2 b̂z = 15 rad/s2 CCW

Addendum:
The problem tells us ωB = 0 at the instant shown, but let’s prove it using the two-points-fixed velocity equation:

N~vAB = N~vAo +
N~ωωωωωωωωωωωωω

A× Ao~rAB = ~0 + (−ωA n̂z)× (LA âx)

which we can plug into:
N~vC = N~vAB +

N~ωωωωωωωωωωωωω
B × AB~rC

vx n̂x + 0 n̂y = (−ωA n̂z)× (LA âx) + (−ωB n̂z)× (LB b̂x)

vx n̂x = (−ωA LA) ây + (−ωB LB) b̂y (4.5)

Dotting equation (4.5) with any two independent unit vectors lets one solve for the unknowns vx and wB:

dot w/ n̂x:
dot w/ n̂y:

vx = ωALA sin(θA) − ωBLB sin(θB)
0 = ωALA cos(θA) − ωBLB cos(θB)

The result is ωB = 0 when θA = 90◦.
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